Visual C++ CGI Database Example

This document will describe the step-by-step setup for a sample CGI database program. I will assume that you have successfully setup either Personal Web Server (PWS) or Internet Information Server (IIS) and you can currently access your server via browser. If running on a single machine, try the URL of http://127.0.0.1 to test your server setup.

The program described here will use the AdvWorks sample database that is installed when you install the Visual C++ compiler, and will demonstrate how to perform queries against that database. Doing an insert or update will also be discussed, but specific examples not presented.

Setting up ODBC

The program presented here (CGIDB) will access the AdvWorks database via ODBC. This means that you must setup an ODBC data source for the AdvWorks database. To do this, you must have a copy of the AdvWorks.mdb file, and the Access database ODBC drivers installed (this should have been done when you installed VC++).

Normally, the advworks.gdb file is stored in the C:\Program Files\Common Files\system\msadc\sample folder. To setup an ODBC data source, do the following:

1. Click the Start button

2. Click the Settings menu selection

3. Click the Control Panel menu selection

4. Double-click the ODBC icon

5. In the ODBC Data Source Administrator, click the System DSN tab

6. Click the Add button

7. Double-click the Microsoft Access Drivers item in the list.

8. In the new ODBC Microsoft Access 97 Setup dialog, enter CGIDB for Data Source Name
9. Click the Select button

10. In the Select Database dialog, locate the advworks.gdb file on your system (See above)

11. Click OK to close the Select Database dialog

12. Click Ok to close the ODBC Microsoft Access 97 Setup dialog

13. Click Ok to close the ODBC Data Source Administrator
14. Close the control panel

Since CGI programs are run by your web server software, the ODBC data source was setup as a system DNS, which means that it is not user-specific, but system specific. Since the web server software does not run as a particular user, we must use a system DSN here.

Creating the base CGIDB program

To create the base program, perform the following in VC 6.0 to create your basic CGI program:

1. Select the New menu item

2. Click the Projects tab of the new dialog

3. Highlight the Win32 Console Application option

4. Change Project Name to CGIDB
5. Make sure the Location is the folder you want to store the program in

6. Click Ok
7. In the Win32 Console Application dialog, select An application that supports MFC
8. Click Finish
9. Click Ok
Adding the CCustomerset class.

Perform the following steps to add a CRecordset-derived class, that will give you access to a table in the AdvWorks.gdb database:

1. Right-click on the CGIDB Classes in the Class View tab

2. Click New Class in the menu that pops up

3. Change the Name to contain CCustomerset
4. Change Base Class to CRecordset
5. Click Ok
6. In the Database Options dialog, select CGIDB from the ODBC drop down list. (This name is from ODBC setup).

7. Click the Ok button

8. In the Select database tables dialog, select Customers
9. Click the Ok button

10. Open the stdafx.h file

11. Just below the line #include <iostream> add the following:

#include <afxdb.h>

12. Compile and build your program, as a test. You should have no errors or warnings.

Adding a basic table-list ability (CGI output)

This step will add the ability to the program to list all the records of the customer table, as a CGI program. This means that it's output will be in HTML format. While you can run the program from the command line to see it's output, after this step you should be able to run it via the browser, and see the program listing it's contents to your browser program.

1. In CGIDB.CPP, below the #include for stdafx.h, add a #include for customerset.h

2. In the _tmain function, in the else portion of the if test, remove it's current contents, and add the following:

cout << "Content-type: text/html\n\n<HTML><BODY>" << endl;

ListCustomer(0, 0);

cout << "</BODY></HTML>" << endl;

3. Above the _tmain function, add the following function:

void ListCustomer(const char* State, const char* OrderBy)

{

CCustomerset Tmp;

if(State && *State)

Tmp.m_strFilter.Format("State=\"%s\" ", State);

if(OrderBy && *OrderBy)

Tmp.m_strSort = OrderBy;

Tmp.Open();

if(Tmp.IsEOF())

cout << "No records found
" << endl;

else

{

while(Tmp.IsEOF() == FALSE)

{

cout << (LPCSTR)Tmp.m_CompanyName << ": ";

cout << (LPCSTR)Tmp.m_ContactLastName << ", ";

cout << (LPCSTR)Tmp.m_ContactFirstName;

cout << " STATE: " << (LPCSTR)Tmp.m_StateOrProvince << "
";

cout << endl;

Tmp.MoveNext();

}

}

}

If you compile and run the program now, you should see output like:

Content-type: html/text

<HTML><BODY>

Let's Stop N Shop: Yorres, Jaime STATE: CA

Old World Delicatessen: Phillips, Rene STATE: AK

Rattlesnake Canyon Grocery: Wilson, Paula STATE: NM

</BODY></HTML>

Press any key to continue

Copy the CGIDB.EXE file (probably in the debug directory) into the cgi-bin directory of your webserver. This is normally your C:\INetPub\WWWRoot\cgi-bin folder.

To test your CGI program, go into your browser, and enter the following URL:

http://127.0.0.1/cgi-bin/cgidb.exe

You should now see the output of the CGI program appear in your browser. If it doesn't, verify that the CGIDB.EXE program compiled ok, and can be run at the DOS prompt, in the cgi-bin folder. Next, make sure that the cgi-bin folder has Execute and Script flags set, but not the Read setting, and make sure that the cgi-bin alias in your server software is set to point to the correct folder.

Create an HTML Form

This is the first part needed to demonstrate searching and sorting the database based on what the user selected from an HTML form. Place a file called CGIDBTST.HTML into your wwwroot folder, where your web server software is setup, and add two it the following:

<HTML><BODY>

<FORM ACTION="cgi-bin/cgidb.exe" ENCTYPE="x-www-form-urlencoded"

METHOD="POST">

<P> </P>

<P>State: <INPUT NAME="State" TYPE="text" SIZE="2"></P>

<P>Order By: <!--SELECTION--><SELECT NAME="OrderBy">

<OPTION VALUE="ContactLastName,ContactFirstName" SELECTED>Lastname

<OPTION VALUE="CompanyName">Company

<OPTION VALUE="StateOrProvince">State

</SELECT><!--/SELECTION--></P>

<P><INPUT NAME="name" TYPE="submit" VALUE="Submit"></FORM>

</BODY></HTML>

The above creates an HTML form, that when it's submit button, will run the CGI program specified in the FORM ACTION line. It will run the program on the web server, and then the output of the CGI program is returned to the browser in which the submit button was pressed. (This is why the CGI program outputs it's data in HTML format.

Adding Input ability to CGI

In order to add input ability to your CGI program, you must determine whether the request method was POST or GET, and then parse the CGI input into variables. The following two functions provide this ability, and should be added to your CGIDB.CPP file. For more details on input processing, see the CGI Help page at www.openroad.org:

char InputData[4096];

void GetAllParams()

{

if(getenv("REQUEST_METHOD") == 0)

{

cout << "No REQUEST_METHOD, must be running in DOS mode" << endl;

strcpy(InputData, "State=AK&OrderBy=CompanyName");

return;

}

if(strcmp(getenv("REQUEST_METHOD"), "POST") == 0)

{

int InputLength = atoi(getenv("CONTENT_LENGTH"));

fread(InputData, InputLength, 1, stdin);

}

else

strcpy(InputData, getenv("QUERY_STRING"));

}

int GetParam(const char * Name, char* Dest)

{

*Dest='\0';

#define ToHex(Y) (Y>='0'&&Y<='9'?Y-'0':Y-'A'+10)

char* pArg = strstr(InputData, Name);

if(pArg) {

pArg += strlen(Name);

if(*pArg == '=') {

pArg++;

while(*pArg && *pArg != '&') { // & is a seperator

if(*pArg == '%') { // % means a hex code is comming

*Dest++ = ToHex(pArg[1]) * 16 + ToHex(pArg[2]);

pArg += 3;

}

else

*Dest++ = *pArg++;

}

*Dest = '\0';

return(1);

}

}

else

cout << "Param " << Name << " not found
" << endl;

return(0);

}

Now, in the else section of the if test in _tmain, make the code look like the following:

// TODO: code your application's behavior here.

char State[3] = "";

char OrderBy[64]="";

cout << "Content-type: text/html\n\n<HTML><BODY>" << endl;

GetAllParams();

GetParam("State", State);

GetParam("OrderBy", OrderBy);

ListCustomer(State, OrderBy);

cout << "</BODY></HTML>" << endl;
Demonstrated but not Described in detail

This example also demonstrates how to create a CRecordset-derived class in order to access a table in a database, and how to search and sort that table. This was done using the m_strFilter and m_strSort data members respectively.

