MGShapes

This program demonstrates several topics on user interface, collection classes, and class inheritance. It is a very basic drawing program that will let you draw ellipses, rectangles, or free-hand lines.

User Interface

In the CMGShapesView class, you will find menu handlers for the Shapes menu items. These are checked menu items that are associated with buttons on the toolbars as well. The toolbar buttons are linked to their menu items by making sure they both have the same ID in their properties.

The menu/toolbar message map handlers are provided for two types of messages:

COMMAND

There are 3 possible drawing modes: Free hand, Rectangle, and Ellipse. When a menu item for the mode is clicked, a flag is set to indicate that the item was selected. The flags are m_FreeHand, m_Rectangle, and m_Ellipse, in the view class. Whichever flag is selected, the others are made false.

UPDATE_COMMAND_UI

These message maps are called to update the appearance of both the menu items and the toolbar. Each handler for each type of drawing mode will determine if that modes flag is set on or off, and then check the menu item accordingly, using the SetCheck function.

Class Inheritance

There is a class named CShape, derived from CObject. This class implements the following functions:

virtual void Serialize(CArchive& ar);

Saves and loads the collection of points for the shape

virtual void OnDraw(CDC* pDC);

Doesn't do anything, but provides the framework for other classes derived from CShape to do their drawing.

virtual void StartPoint(CPoint& Point);

By default, adds the point to the collection of points. Derived classes may override.

virtual void MidPoint(CPoint& Point);

By default, does nothing but provide framework. Derived classes may override.

virtual void EndPoint(CPoint& Point);

By default, adds the point to the collection of points. Derived classes may override.

void MaxTwo(CPoint& Point);

Helper function to add a point to the collection class, but gaurantees that there will never be more than two points in the class.

Derived from CShape, is CShapeFreeHand, CShapeRect, and CShapeEllipse. These classes are responsible for how to store their points, and how to draw them.

The View Class

The View class has the following main points of interest:

bool m_FreeHand, m_Ellipse, m_Rectangle;

These flag values are used to control the appearance of the menu items, as well as to keep track of the drawing mode the user is in.

CShape* m_pShape;

This is a pointer to the 'current' shape the user is drawing. If this pointer is null, then user is not drawing. When the mouse is clicked down, the following code will initialize the m_pShape pointer:

if(m_FreeHand)

m_pShape = new CShapeFreeHand;

else if(m_Ellipse)

m_pShape = new CShapeEllipse;

else

m_pShape = new CShapeRect;

Note: This is the only place in the view where you will find anything type-specific for the shape class.

In the LButtonDown handler, the program creates the current shape object, and then calls its StartPoint function, to notify the object that points have started (user has started to draw).

In the Mouse Move handler, if m_pShape is not NULL, then the point for that mouse move is also given to the m_pShape object. InvalidateRect is called to update the screen. The shapes are drawn on a memory DC (called memDC in the view class), and then they are BitBlt'ed to the screen DC, to eliminate 'flicker'. The InvalidateRect functions also are passed a parameter to not erase the background.

In the Mouse Up, which indicates an end of the users drawing, the m_pShape EndPoint function is called with the ending point, and the screen is again invalidated, causing OnDraw to be called.

OnDraw

The OnDraw function in the view contains the following code:

int i=0;

CShape* pShape;

while((pShape = pDoc->GetShape(i++)))

pShape->OnDraw(pDC);

if(m_pShape)

m_pShape->OnDraw(pDC);

Note that this code goes through all the shapes from the document class, and then the current shape (m_pShape), call the OnDraw for each item. Since these are base-class pointers, and the OnDraw function is a virtual function, then the OnDraw method for the specific class that the shape is will be called.

The Document Class

The document class has a single data member, call m_Shapes:

CObArray m_Shapes;

Since this is CObArray, and the CShape object is derived from the CObject, we can store CShape pointers in the collection. The m_Shapes array is used in the Serialize function to save and load all the various shapes.

The document class also provides interface functions to add shapes (AddShape) and retrieve shapes (GetShape) from the collection class.

