CMemoryComboBox

This document describes a class derived from CComboBox that adds the following additional features:

· Strings in the combo box can be automatically stored to and loaded from the registry

· As the user types, auto-completion of text based on strings in the drop-down list

· Notifies parent window when user hits ENTER during typing in the combo box

The demo project (CMComboBox) shows how to use the class in two different examples: One is a normal combo box on a CFormView dialog, and the other is as a combo box in a CDialogBar object (which appears as a toolbar in the main window). The dialog-bar example implements the registry saving and loading, while the CFormView demo does not. Both demonstrate auto completion, and the use of the ENTER key handling.

Overview

Registry Saving and loading

The CMemoryComboBox gives you the optional ability to automatically save and load the strings it contains to and from the registry. This functionality is implemented in the PreSubclassWindow and OnDestroy functions.

PreSubClassWindow is called when an on-screen control is associated with an instance of a CMemoryComboBox object. In this function, you will find the code used to load strings from the registry. Since it is called by the framework automatically, you don't need to call this function manually. It is called by the framework either when you have a member CMemoryComboBox variable mapped to a combo box (with ClassWizard), or if you manually call the SubClassDlgItem function (as is done in the demo for the dialog bar control).

The OnDestroy function is called when the child window control is destroyed, by the framework. This function will save the current string list to the registry.

The code within these functions identifies the dialog ID and control ID as the 'Key' for storage in the registry, since these identify a unique control within a dialog. The GetDlgCtrlID function is used to determine the dialog and control ID at runtime. For example:

CString Value;

CString Family, Setting;

int j, DialogID, ID;

CWinApp* pApp = AfxGetApp();

// Determine IDs for parent dialog, and this control:

DialogID = GetParent()->GetDlgCtrlID();

ID = GetDlgCtrlID();

// Set registry Key the dialog

Family.Format("MemoryComboBox%d", DialogID);

j=0;

do {

// Load each string from the dialogs settings (for this control)

Setting.Format("ComboBoxStr%d-%d", ID, j++);

Value=pApp->GetProfileString(Family, Setting);

if(Value!="")

AddString(Value);

} while (Value!="");

Registry saving and loading is an optional behavior, which by default is off. You can control the behavior on either a class-wide or object-specific basis:

If you want all CMemoryComboBox objects to save automatically perform registry saving and loading, then call the static SetAllRegistrySave function with true. If you want specific objects only to save and retrieve, then call SetAllRegistrySave with false (the default already), and then call the SetThisRegistrySave function with true for the CMemoryComboBox objects you want to perform automatic saving and loading.

Autocompletion

Autocompletion is the ability for the combo box to automatically fill in the edit box of a combo box with an item from the drop down list as the user types, similar to the behavior in the Internet Explorer URL combo box. This is implemented in two functions of the CMemoryComboBox class: OnEditupdate and PreTranslateMessage.

The OnEditUpdate function is called by the framework (you don't need to call it) as the user types in the edit box of the combo box. On each call, the function will check the selection portion of the edit box to see where the user is typing. If they are typing at the end of the text, then it searches the list box for text that starts with the text that the user has typed. If the prefix text is found, then it takes the entire text from the list box portion, and places it into the edit box, and makes text after what the user has typed so far the selected region of the text.

Because the text is marked now as the selected text, the next keystroke typed by the user will replace the selection, as is normal for a windows edit box. If the user wants to eliminate only the additional text added by the lookup, they can simply press the backspace or delete key.

The PreTranslateMessage function, which is also called automatically by the framework, will set the m_DoPerLookup flag to false, meaning that the OnEditUpdate will not perform its automatica lookup and replace. It only sets this flag if the user hits the backspace or delete key.

Autocompletion can be turned off for a specific combo box by setting the m_DoLookup member in the object instance to false. This can be done at anytime, but would commonly be done in the constructor for the view or dialog that contains the CMemoryComboBox data member.

Responding to ENTER

If the user is typing in a combo box that is wrapped by the CMemoryComboBox, and they hit ENTER, then the CMemoryComboBox will generate a CBN_SELCHANGE message to the main window, as if the user selected an item from the drop-down list. This was done so that the programmer using the class merely has to add a message map for the CBN_SELCHANGE message from the combo box, and that function is called whether the user actually selected an item from the drop-down list, or if they hit ENTER during typing.

The CBN_SELCHANGE handler can be added via ClassWizard for normal dialog and CFormView main windows. If the combo box is in a dialog bar in the mainframe (as it is in Internet Explorer), then you must manually add the event handler to the MFC message map (without using ClassWizard).

Using the ComboBox

In order to use the CMemoryCombox class in your own projects, you must copy the MemoryComboBox.cpp and MemoryComboBox.h files to your own project folder, and add them to your project.

To use the CMemoryComboBox in a normal dialog or CFormView object, you simply need to place a combo box on the dialog resource, and then use ClassWizard to add a member variable ('control' category) of type CMemoryComboBox to it. You may then use it as any other combo box. The following code can be added to a view or dialog class to handle the user hitting ENTER while typing, to have the users text added to the combo box string list:

void CCMComboBoxView::OnSelchangeCbcolors()

{

// Add new string to combo box (will not add duplicates), if you want

m_CBDemo.AddString();

// Determine string selected from user, either by index

// or text in edit box

CString Text;

int Index = m_CBDemo.GetCurSel();

if(Index >= 0)

m_CBDemo.GetLBText(Index, Text);

else

m_CBDemo.GetWindowText(Text);

MessageBox(Text); // This is users selection/entry

}

The code above, except for the AddString call, also demonstrates how to get the text for what the user has in the combo box text area (whether it was changed by selecting from the drop-down list, or be typing and pressing ENTER). Note that this code would be almost identical for any other type of combobox. If you simply want to utilize the auto-completion feature, you do not need to add the code above.

Using CMemoryComboBox in a CDialogBar object

For a dialog bar, similar to that used in Internet Explorer, there are some additional manual steps you must perform. The steps below assume that you have already gone through the steps to add a CDialogBar to your project (this is done using the 'Project' / 'Add To Project' menu items, and selecting the Dialog Bar item from the 'Visual C++ Components' folder).

To utilize the CMemoryComboBox class in a dialog bar:

· Add a combo box to the dialog bars dialog resource (the demo has a control ID of IDC_URLS)

· Create a CMemoryComboBox data member in your CMainFrame class (m_DialogBarCB in our sample).

· In the CMainFrame::OnCreate function, add the code to subclass the combo box in the dialog bar to the m_DialogBarCB data member:
m_DialogBarCB.SubclassDlgItem(IDC_URLS, m_wndMyDialogBar);

· Manually, add the prototype for a message map handler to the view class, in the AFX_MSG section:

// Generated message map functions

protected:

//{{AFX_MSG(CCMComboBoxView)

afx_msg void OnSelchangeCbcolors();

//}}AFX_MSG

// MG: For DialogBar Demo, we add handler manually for selection change on Combo Box

afx_msg void OnSelChangedURL();

DECLARE_MESSAGE_MAP()

· Manually, add the message map entry to the view .cpp file, in the MESSAGE_MAP section:

BEGIN_MESSAGE_MAP(CCMComboBoxView, CFormView)

//{{AFX_MSG_MAP(CCMComboBoxView)

ON_CBN_SELCHANGE(IDC_CBCOLORS, OnSelchangeCbcolors)

//}}AFX_MSG_MAP

// Standard printing commands

ON_COMMAND(ID_FILE_PRINT, CFormView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_DIRECT, CFormView::OnFilePrint)

ON_COMMAND(ID_FILE_PRINT_PREVIEW, CFormView::OnFilePrintPreview)

// MG: Manually add handler for the combobox on the dialog bar

ON_CBN_SELCHANGE(IDC_URLS, OnSelChangedURL)

END_MESSAGE_MAP()

· Manually, add the handler function to your .cpp file:

// MG: This is the handler (added manually) for when the combobox in the dialog bar is changed

void CCMComboBoxView::OnSelChangedURL()

{

// Retrieve pointer to main frame, for our CMemoryComboBox object

CMainFrame* pMain = (CMainFrame*)AfxGetMainWnd();

pMain->m_DialogBarCB.AddString();

// Get current text from the combo box:

CString Text;

int Index = pMain->m_DialogBarCB.GetCurSel();

if(Index >= 0)

pMain->m_DialogBarCB.GetLBText(Index, Text);

else

pMain->m_DialogBarCB.GetWindowText(Text);

MessageBox(Text); // Text is now the users selection

}

Note the manual steps which were needed to add a handler for the dialogbars combo box. You can not add handlers to controls in the dialog bar using ClassWizard.

Functions in the CMemoryComboBox class

In addition to all the functions the CMemoryComboBox class inherits from CComboBox, it offers the following additional features/functions:

void SetAllRegistrySave(bool Mode);

Turns on or off automatic registry saving and loading for all instances of the CMemoryCombobox class.

CMemoryComboBox::SetAllRegistrySave(true);

// All items now do auto save and load

void SetThisRegistrySave(bool Mode);

Turns on or off automatic registry saving and loading for a specific instance of a CMemoryComboBox class.

m_CBURL.SetThisRegistrySave(true);

// m_CBURL will save and load strings automatically

bool m_DoLookup;

This public data member can be set to false to stop a CMemoryComboBox object from performing auto completion.

m_CBURL.m_DoLookup = false; // m_CBURL will no longer do auto completion

