The PTList Example

The PTList example is a program similar to the Scribble tutorial, in that it maintains a list of points, and draws them. There are a few differences:

The data is organized as a collection of shapes, and each shape is a collection of points

It implements an Import feature, with a standard File Open dialog

It does not provide free hand drawing

This program was meant to demonstrate the collection classes, a dialog box, a checklist box, and some other custom classes. Please note that this program was set up to read 3D points (X, Y, and Z coordinates), but it does not display the data in a 3D manner. For this demonstration, the 'Z' coordinate is simply ignored during the draw.

� �

The classes

CPoint3D

This class provides support for a 3D point. It has X, Y, and Z data members. It was derived from a CObject, and provides a Serialize routine, so that it may save and load it's data to and from a disk file. It has a copy contructor and assignment operator, so that it works with the CPOoint3DArray template class, described later. It is located in the Point3D.h and Point3D.cpp files.

CPoint3DArray

This class is derived from CArray, a template class. It's a collection class that contains an array of CPoint3D objects. These are the 'shapes' mentioned earlier. This class provides a Serialize function, though the template classes in MFC are designed to work with a template function called SerializeElements. I had problems getting the SerializeElements to work correctly, so I fell back to writing a Serialize function for this class. It has a copy contructor and assignment operator, so that it works with the CFrame class, described later. It is located in the Point3DArray.h and Point3DArray.cpp files.

CFrame

This class is nearly identical to the CPoint3DArray, except that instead of maintaining a collection of CPoint3D items, it maintains a collection of CPoint3DArray items. It is defined in Frame.h and Frame.cpp.

CVisibleDialog

This class is derived from a CDialog, and represents a dialog box which is onvoked by the user to permit them to mark certain shapes as visible, or invisible. It demonstrates a more advanced and reusable design, in that it works directly against a CFrame object, which is passed to it in it's constructor. This class also contains, and demonstrates the usage of, a CCheckListBox class.

CPtlistView

This class is the most heavily modified class that was provided by ClassWizard. It implements the drawing and import abilities, as well as the drawing of the CFrame. It's main portions of modified code follow.

CPtlistView

The view class is used to display, import, and invoke the CVisibleDialog dialog box. As stated earlier, the majority of the code additions take place in this class. It does not have any data members.

CPtlistView::OnImport

This is the function, that when called via a menu click, will import data from a text file. The data file is assumed to be a text file in the format:

[ShapeName]

x,y,z

x,y,z

...

It opens the file using a CFile, and then reads it's entire contents into memory. According to the new C++ standard, new should throw an exception upon failure, so there is no test code. But, to make the program more complete, a try/catch block should have been setup to report the error.

Once the file is loaded into memory, each line is parsed using strtok. Then, each point in a line is parsed using a CString object. Each point is stored in a CPoint3D object, then added to a CPoint3DArray object. The CPoint3DArray object is then added to the CFrame object. The CFrame object, is a data member in the document.

void CPtlistView::OnImport()

{

	// MG: Handles the import from a file

	CPtlistDoc* pDoc = GetDocument();

	

	// MG: Establish a file-open dialog box

	CFileDialog Open(TRUE, "dat", "*.dat",

		OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,

		"Dat files;*.DAT||All files;*.*", this);

	

	if(Open.DoModal() == IDOK)

	{

		CFile Input;

		

		// MG: Eliminate old data

		pDoc->Frame.RemoveAll();

		if(Input.Open(Open.GetPathName(), CFile::modeRead))

		{

			char *InputData, *Tmp, *Line;

			DWORD FileSize = Input.GetLength();

			CPoint3D Point;

			CString PointInfo;

			int FrameIndex=-1, Comma1, Comma2;

			CPoint3DArray PointArray;

			// MG: Read entire file into memory in 1 read

			Tmp = InputData = new char[FileSize+1];

			Input.Read(InputData, FileSize);

			InputData[FileSize]='\0';

			while((Line=strtok(Tmp, "\n"))) // MG: Parse it on \n

			{

				Tmp=NULL;

				if(*Line=='[') // MG: In my example, a new shape (list of points)

				{

					if(FrameIndex>=0)

					{

						pDoc->Frame.Add(PointArray);

						PointArray.RemoveAll();

					}

					FrameIndex++;

					Line[strlen(Line)-2] = '\0';

					PointArray.Name = Line+1;				

				}

				else

				{

					// MG: Point data, 3 integers

					if(strlen(Line)>1)

					{

						PointInfo = Line;

						Comma1 = PointInfo.Find(',');

						Comma2 = PointInfo.ReverseFind(',');

						Point.X = atoi(PointInfo.Left(Comma1));

						Point.Y = atoi(PointInfo.Mid(Comma1+1, Comma2-Comma1));

						Point.Z = atoi(PointInfo.Right(Comma2+1));

						PointArray.Add(Point);

					}

				}

			}

			// MG: Add the last point array, and set document 'dirty'

			pDoc->Frame.Add(PointArray);

			delete [] InputData;

			pDoc->SetModifiedFlag(TRUE);

			pDoc->UpdateAllViews(NULL);

		}

	}

}

CPtlistView::OnViewVisible

This function is responsible for invoking the CVisibleDialog dialog, and re-painting the screen if it returns OK.

void CPtlistView::OnViewVisible()

{

	// MG: Invoke dialog box to select visible/invisible items

	CPtlistDoc* pDoc = GetDocument();

	CVisibleDialog Tmp(&pDoc->Frame);

	if(Tmp.DoModal()==IDOK)

		pDoc->UpdateAllViews(NULL);

}

CPtlistView::OnDraw

As always, this portion is responsible for drawing the document data to the screen. It gets the CFrame object from it's document in order to draw it. The shapes are drawn using simple MoveTo and LineTo commands.

void CPtlistView::OnDraw(CDC* pDC)

{

	CPtlistDoc* pDoc = GetDocument();

	ASSERT_VALID(pDoc);

	for(int F = 0; F < pDoc->Frame.GetSize(); F++)

	{

		if(pDoc->Frame.GetAt(F).Visible)

			for(int S = 0; S< pDoc->Frame.GetAt(F).GetSize(); S++)

			{

				if(S==0)

					pDC->MoveTo(pDoc->Frame.GetAt(F).GetAt(S).X,

				 pDoc->Frame.GetAt(F).GetAt(S).Y);

				else

					pDC->LineTo(pDoc->Frame.GetAt(F).GetAt(S).X,

				 pDoc->Frame.GetAt(F).GetAt(S).Y);

			}

	}

}

CPtlistDoc

This class is where the data is stored. It only has one data member, a CFrame object. This data member is used by the view and dialog classes to complete the program.

CPtlistDoc::Serialize

Since the data is stored in the document, it's serialize routine us used for saving and loading. Since the CFrame class is Serialize compliant, all we have to do here is call it's Serialize function. The if test is the remnants of what AppWizard created, and are not needed.

void CPtlistDoc::Serialize(CArchive& ar)

{

	Frame.Serialize(ar);

	if (ar.IsStoring())

	{

		// TODO: add storing code here

	}

	else

	{

		// TODO: add loading code here

	}

}

�
CPtlistDoc::OnNewDocument

The only other change made to the document class (besides adding a CFrame object data member called 'Frame'), was to add code to the OnNewDocument function, so that when File/New was done on the menu, the current shapes are cleared out.

BOOL CPtlistDoc::OnNewDocument()

{

	if (!CDocument::OnNewDocument())

		return FALSE;

	// MG: Clear out the frame

	Frame.RemoveAll();

	return TRUE;

}

CVisibleDialog

This class has tw data members: a CFrame pointer, which is passed to it in it's contructor, and a CCheckListBox object. The CCheckBox object is created, sized and positioned at runtime.

CVisibleDialog::OnInitDialog

This routine was added so that the CCheckListBox (a data member called CheckVisible) could be initialized. Like most Window Control classes, it provides a Create function which is invoked to initialize it. A static control was placed on the dialog with an ID of IDC_CHECKPOS. This static control's only purpose, is to serve as a positioning window for the CCheckListBox. Once created, the check list box is populated with strings and check boxes from the CFrame pointer it maintains (it was passed in the constructor).

Note that the 'Data' item for an element in the list box is used to store the index of the shape it represents in the CFrame. This is common: Each item in a list box can contain a 32-bit value that you supply. This helpful for keeping track of items that in a sorted list box.

BOOL CVisibleDialog::OnInitDialog()

{

	CDialog::OnInitDialog();

	

	// MG: Determine position, based on a

	// 'place-holder' static control in the dialog

	RECT X;

	GetDlgItem(IDC_CHECKPOS)->GetWindowRect(&X);

	ScreenToClient(&X);

	

	// MG: Create the CCheckListBox, using size and position just determined

	CheckVisible.Create(

		LBS_SORT|LBS_HASSTRINGS|LBS_OWNERDRAWFIXED|WS_CHILD|WS_VISIBLE|WS_TABSTOP|WS_BORDER,

		X, this, 200);

	// MG: Initialize the CCheckListBox items, with or w/o checks

	int j;

	for(int i=0; i < Frame->GetSize(); i++)

	{

		j = CheckVisible.AddString(Frame->GetAt(i).Name);

		CheckVisible.SetCheck(j, Frame->GetAt(i).Visible);

		CheckVisible.SetItemData(j, i); // MG: Store Index in 'Data'

	}

		

	CheckVisible.ShowWindow(SW_NORMAL); // MG: Show the Check list

	return TRUE; // return TRUE unless you set the focus to a control

	 // EXCEPTION: OCX Property Pages should return FALSE

}

CVisibleDialog::OnOK

This is the routine that, when the user clicks OK, will modify the CFrame object according to the user's selections. The 'Data' item for a list box item is retrieved (it was placed there by OnInitDialog) to help identify what CFrame element the checked setting is for. The Visible data member of that element is set.

Note here how the operator[] function was used instead of the GetAt function for the class. This is because GetAt returns an object, but operator[] returns a reference to the object, so that we may change the original.

void CVisibleDialog::OnOK()

{

	// MG: The OK button updates the CFrame object directly here, if the

	// user clicked OK. The view that invoked it must simply

	// call the UpdateAllViews function for it's document.

	int Checked, Index;

	for(int i=0; i < CheckVisible.GetCount(); i++)

	{

		Checked = CheckVisible.GetCheck(i);

		Index = CheckVisible.GetItemData(i);

		// MG: Note that GetAt won't work here, because it returns an object, not a reference

		(*Frame)[Index].Visible = (Checked!=0);

	}

	

	CDialog::OnOK();

}

