Srt

Generic Sort utility written with MFC

Srt is an MFC-based Windows program that allows you to sort an input file and generate an output file of any desired format. The user has the ability to perform the following items:

Define input file field layout

Define field order for sort

Define output appearance (in seperate file)

Select input data file name

Select output data file name

Save, edit, and load any of the above definitions

�

Figure 1. Main Screen

�
Program Overview

The Srt program permits you to re-order, and re-organize one data file into another. This permits you to alter the arrangement of fields within a file layout or the order of records within the file. You can also alter the appearance of a file so that a flat-fixed-length file can be sorted and sent to a normal text file.

In order to accomplish the above-mentioned tasks, you must specify 3 categories of data: Input file layout, Sort order, and output file layout. From the main screen (Figure 1), you will notice 3 list boxes. Next to each list box, You will also notice 4 buttons: Add, Remove, Up, and Down. These buttons permit you to add and remove items in the list box, and change there position in the listbox. If you double-click on an item in a list box, you will be given an opportunity to edit that item.

The following sections discuss each listbox in further detail.

Input File Field Definition

From the main screen (Figure 1), the top listbox is your input table layout. Here you defined the fields found in the input file, by assigning each a name, type, size (Note: String is currently the only valid data type), and optional offset. The Offset can be calculated automatically for all fields by clicking the Calc Offset button, to the right of the Remove button.

Adding a field

If you wish to add a field, click the Add button. You will be presented with the dialog displayed in figure 2. You must type in a field name, type, and size(non-zero). Once that is entered, simply click the OK button, and the dialog will disappear and the field is added to the Field list box. You will also notice the program maintains the current record size of what you have defined.

Note: If the input file contains a CR\LF at the end of each record, simply define a field called CRLF, 2 bytes in size, as the last field.

�

Figure 2. Field Definition

Editing a field

In order to edit a field (change it’s name, type, size, or offset), double-click on that field in the list box, and you will be presented with the field-edit dialog, similar to that in figure 2. Make any changes you want, and click OK.

Sort Order Definition

Sort order is controlled by selected fields to sort on, and the order in which to sort. The Sort list box contains a list of fields that the sort is based on. The appearance of items in the list dictates their priority. For example, to sort by lastname,firstname, the list box would contain lastname as it’s first entry, and firstname as it’s second. You may optionally selected ascending or descending sort by clicking the Descending check-box, found on the main screen (figure 1).

Adding a Sort Field

To add a field to sort by to the sort list, click the Add button next to the Sort list box. You will see the dialog in figure 3. The Field item is a drop-down list which will contain the names of fields found in the Field list box of the main screen (In other words, you must specify the Input File Field Definition before specifying the sort).

Select the field you want to sort on. If you want a case-sensitive sort, check the Sensitive check box, otherwise the sort will be case in-sensitive. Clicking the OK button will close this dialog and and the field to the sort list box.

�

Figure 3. Sort Definition

Editing a Sort Definition

Editing a sort field is similar to the field editing. Double click on the sort item you want to alter, and you will see a dialog similar to figure 3. Change the information you want and click the OK button.

Output File Definition

The output file definition indicates how the records will be written to the new output data file. The bottom, wider list box indicates what fields are sent to the output file, and what sort of formatting is performed on them. The output definitions have more options then either the Field or Sort items. You will notice the following items in the output definition:

		EOL - A CR\LF is output after the field

Not EOL - No CR\LF is output after the field

		Trim - The field is trimmed before being output

No Trim - The field is not trimmed before output (for keeping fixed-length)

		Sep - a single space is output after the field, if not blank

No Sep - No seperator is output after the field (allowing the joining of fields)

		Blank OK - If an output line is completely blank, it is output anyway

No Blank - If a line is completely blank, then no output takes place.

You will also note a CR\LF Record check box on the main screen. If you click this option, then an extra CR\LF is added at the end of each record output.

Adding an Output Field

Adding an output field is similar to in the Input and Sort definitions. Simply click the Add button to the right of the Output list box. You will be presented with the dialog in figure 4

.

�

Figure 4. Field Output Definition

As in the Sort definition, the Field item is a drop-down list of names from the Field list box of the main screen. Pick the field you want to output.

The following tables represents the other options:

Option�
Checked�
Not Checked�
�
Postfix�
Text to appear after the field, if the field is not blank�
�
�
No Trim�
Do not remove white space from right of field�
Remove whitespace from right of field�
�
End Line�
Add a CR\LF after field�
Do not add a CR\LF after the field�
�
Allow blank lines�
Output lines even if blank�
No blank lines will be output�
�
No Seperator�
No space is added after field output�
A space is added after the field, is not blank�
�

Editing an Output Field

Editing an output field is the same as editing an input or sort definition. Double-click on the item in the list box, and you will see the dialog similar to that in figure 4, with the information for the field. Edit is as desired, and click OK.

Selecting Input and Output files

Input and output files may either by typed in manually, or you may press the ‘…’ button to the right of the data-entry fields. This will present you with an Open File dialog box for the input file, and a Save As dialog for the output file name. Select or type the filename you want, and click OK.

Example:

The following is an example of a completely setup program run:

�

Figure 5. Sample setup

�
Technical Overview

The Srt program is based on an MFC, SDI program, whose view is a CFormView-derived class. All controls are placed on the form using the standard dialog editor. All member variables and functions (except the UpdateRecSize function in the CSrtView) were added using ClassWizard.

All classes are MFC compliant, and implement the MFC serialization method for data storage and retrieval.

The CSrtDoc, derived from the CDocument, contains only one member, an MSortDef object which contains all of the sort definitions and operations.

The basic strategy behind the program is to maintain a list of field definitions. It also maintains a list of Sort and Output definitions. These lists are maintained in CObArray objects. The Sort and Output items contain the names of the fields they operate with. The Sort and Output lists will eventually do a look-up against the field list to access field data for either sorting or output.

The MFlatFile class contains function to access field data, either by index in the list, or by the fields name. The IsName function of the MField class is used to simplify the task of locating a field via name.

This location of field by name is important, because thats what the user works with, not indices. For this reason, this ability has been added to the MFlatFile class.

The sorting strategy (MsortDef class)

The sorting strategy is fairly simply. When a DoSort is executed, each record from the file is read with the ReadRecord function. For each record, the AddRecordSort function is called.

The AddRecordSort function loops through all the MSort items in the sort collection, and gets the field name for the sort. It then gets the value of that field and places it into a Cstring. That value is concatenated to a Key, and the process is repeated for each field name found in the sort list.

After fully processed, a sort key has been built. One extra item is aded to the key. The record number (a parameter to the AddRecordSort function) is converted into a string and appended to the key. This key is then added to the Sorted member of the MSortDef class.

The Sorted member is an MSortStr class object, meaning it will automatically sort any strings added to it. This is where the sorting takes place.

Output strategy (MSortDef class)

For record output, the Sorted member is iterated from start to end. This provides sorted access to keys built in the Sorting Strategy described above. For each key in the list, the following is done:

The key for an entry is retrieved, and the last portion of the key, which contains the record number, is examined.

That record number is extracted, converted to an integer (from the string format), and used in the Goto function to move to that record. A ReadRecord is then performed to read all the data for that record.

The OutputRecord function is called. This function iterates through all the items defined in the OutputList collection. For each entry, it does the following:

Extracts the field name to be output.

Calls the GetAsString function to get that fields data.

Formats the data, based on other output specifications.

If the output field is marked EOL, then the Line data is output (if not blank) and a CR\LF is output

If the field is not EOL, then the data is concatenated to the Line data.

Over-riding MFC standard behavior

The OnFileOpen member function of the CSrtApp class demonstrates how to over-ride standard MFC behavior. Normally, if MFC is requested to open a file and a file with the same name is already open, it will not open the file, but switch to it’s view. This occurs even if you have changed the document.

The approach taken here is to locate which standard MFC member function dictates the behavior to be changed. The source code is located in the SRC directory, if it was installed during compiler installation. One the function is located, you can normally copy and paste most of the code found in the function, and make slight changes to it, to make it perform in the desired manner.

You do not change the code in the SRC directory. Instead, you over-ride the C++ member function of MFC. In this example, we have provided an OnFileOpen member function to the CSrtApp class (derived from CWinApp).

Class Summary

The classes are discussed here in two sections: Visual and Non-visual.

Non-visual classes

Srt contains the following non-visual classes:

Fundamental Classes:

	FieldException	Exception class used by the Field classes

	MField		Base class for other field classes

	F_String		String-type field class

	MSort		Class to contain information on a single sort field

	Moutput		Class to maintain information on a single output field

Complex Classes:

	MFlatFile	A collection of MField-derived classes, and file-related data

	MSortStr	A sorted string list

	MSortDef	Derived from MFlatFile, used to manage all sort and output definitions. Also

performs the sort.

FieldException and FlatFileException

The FieldException and FlatFileException are exception classes derived from CFieldException. They are intended to handle errors which occur during field and file operations, and demonstrates how to write your own excetpion class compatible with MFC exception reporting and handling.

In both classes, the GetErrorMessage is the function that MFC will invoke to get the text the user sees for the error message.

The Throw????Exception macros are a convenience macro provide to simply invoking the exception. It is similar in operation to the AfxThrowMemoryException and AfxThrowFileException helper functions.

MField

The MField class (defined in mfield.h and mfields.cpp) is a base class for field definitions. It provides the following features:

Null value handling

Name, Size, and Offset specification

Internal data storage (all data types stored as a string, for programming convenience)

Of importance for the MField class, and all derived classes is the ability to get and set values from and to the field. The following member functions are provided for this task:

	Getting and setting field values via a CString

	virtual CString GetAsString()

	virtual void SetAsString(const char * Source);

	virtual MField operator=(char* Src);

	Getting and setting field values via a record buffer (The field's offset and datasize are used)

	virtual void SetFromBuffer(const char * Buffer);

	virtual void GetToBuffer(char * Buffer);

	Getting and setting field values as an integer

	virtual int GetAsInt();

	virtual void SetAsInt(int Val);

F_String

The F_String class (defined in mfield.h and mfields.cpp) is derived from the MField class, and provides for string-type fields. This class definition is in reality mostly just overhead in order to support MFC serialization, most of the work is in the MField class. The only real feature this class adds is the ability to automatically trim (or not trim) a string upon reading and writing. In other words, the string "This " when stored into the field and then retrieved, would become "This".

In order to support the auto-trim feature, two member functions are important:

	BOOL GetAutoTrim();

	Returns auto-trim mode

	void SetAutoTrim(int Mode);

	Sets auto-trim mode on or off

MSort

The MSort class (defined in msort.h and msort.cpp) is designed to encompass sort definitions for a single Mfield item. Multi-field sort will be implemented by using an array (CObArray) of MSort objects. The MSort class keeps track of three basic pieces of data:

	Fieldname - Field to be used for sort

	Ascending - A true/False value to indicate ascending or descending sort

	Sensitive - A true/false value indicating case sensitive or in-sensitive sort.

MOutput

The MOutput class (defined in moutput.h and moutput.cpp) encompasses all of the output information for a single field. It describes how that field is to be displayed, in the output file. It has the following attributes upon output:

	End of Line - If True, a CR/LF is placed after this field

	Trim - If True, then the output has trailing whitespace removed. If false, it is set to full field width

	Sep - Separator. If True, a space follows field

	AllowBlank - Checks the output buffer line. If true, and this field is a ‘End of Line’ field, and the

line is blank, then a blank line is output. If false, then no line is output.

MFlatFile

The MFlatFile class (defined in mflat.h and mflat.cpp) is designed to represent a ‘flat’ datafile, composed of fixed-length fields. It maintains an array of Mfield-derived classes, and provides support for maintaining and accessing this array. It also provides file-access routines, such as Open, Goto, Read and Write records, and Close. Note: WriteRecord has not been tested.

MSortStr

MSortDef

The MSortDef class (defined in msortdef.h and msortdef.cpp) is derived from the MFlatFile class, and pulls together the MSort, and MLayout classes to perform the actual sort. This class is also responsible for managing the previously-mentioned classes in several CObArrays.

�

��

����

����

����������������

��������

�

Visual Classes

The visual classes were all created with the standard dialog editor, and their actions and variables were all added with ClassWizard.

CSrtView

The CSrtView is the view class for the application. You will find most of the user-interface code in this class. It handles the setup of all information, and communicates to the CSrtDoc class (which only has a MSortDef object in it).

FldEdit

The FldEdit class is a CDialog-derived class used to add and edit fields in the field list. The OnOK event has been handled to validate data entry. The class has the following variables, which are linked to the form's edit controls:

	m_Name	Field name, must not be blank

	m_Type		Field type, must not be blank

	m_Size		Field size, must not be 0

	m_Offset	Field offset

This dialog is invoked when the user double-clicks on a field to edit it, or clicks the Add button next to the field list box.

SrtEdit

The SrtEdit class implements the Sort Definition edit dialog box, and is lso derived from the Cdialog class. The OnOK event is implemented to validate user’s data entry. Of special note in this dialog is the combo-box, which gets initialized by the CSrtView class to contain a list of valid field names. The following variables were added:

	m_FieldList	Control object, for interfaceing with the combo-box

	m_Field		String variable, with field user selected

	m_Sensitive	true or false value for user’s sensitivity selection.

OutEdit

Like the SrtEdit dialog, this dialog was derived from the Cdialog class, and implements an OnOK handler to validate user’s data. The following data items are available in the class:

	m_FieldList	Control class, for interfacing with the combo box

	m_Field		Field name user selected

	m_NoSep	User’s ‘Sepator’ selection (true/false)

	m_PermitBlank 	User’s ‘Allow blank’ selection (true/false)

	m_Postfix	User’s postfix text selection

	m_NoTrim 	User’s ‘No Trim’ selection (true/false)

	m_EndLine 	User’s ‘End Line’ selection (true/false)

Interesting demonstrations

This program contains several demonstrations of interesting MFC programming topics:

Exception class creation (FlatFileException, FieldException)

Exception handling, MFC-style (DoSort function)

List box control management (CSrtView.cpp)

Sorted string list class (MSortStr)

Dialog interactions and initializations (CSrtView, SrtEdit, OutEdit, FldEdit)

Class styles of ‘Is a’ and ‘Has a’ (MSortDef)

Serialization (all non-visual classes)

Flexible, fairly-simple, user-interface (CSrtView)

Over-riding default MFC file-open behavior

�
What Needs Improvement

As it stands, the program is functional. There are however, several points where the program could be improved :

Visual-Non Visual interface

The code that interfaces the visual and non-visual classes could be improved with a bit more thought. Currently, all of the items are handled directly in the main View window. Several suggestions for improvement are:

Give the xxxEdit dialog classes code to interface to their non-visual counterparts

Give the non-visual classes code to interface to their visual counterparts

Create a separate interface class, to allow easy interaction.

Eliminate redundant code

Better Source code documentation

�Srt program specifications

Page � PAGE �12�

� DATE �01/12/98�

MFlatFile

MSortDef

MField

F_String

Derived from

MSortStr

CFile

MSort

Contains

CFile

MOutput

