The Clipboard

The clipboard is the area where windows hold data objects that have been cut or copied, and are about to be pasted. What it really is, is a global handle to a resource that any program may get or set. That resource may be a string, a bitmap, or any number of possible clipboard formats.

The default menu provided by AppWizard/MFC provides automatic support for some menu selections, but not all. For example, the File Open menu choices is automatically implemented for you. But the Edit menu, with it'sCut, Copy, and Paste selections is not.

The Edit menu choice is not implemented automatically by MFC, because of the number of clipboard formats. Note that the CEditView does provide this functionality, automatically.

Adding Clipboard functionality to your program

1. Add menu support

To add clipboard functionality, you will need to use ClassWizard to add member functions for the ID_EDIT_CUT, ID_EDIT_COPY and ID_EDIT_PASTE object IDs. These correspond to the menu selections under the Edit menu.

2. Interface with the Clipboard

The CWnd provides 3 functions for interfacing with the clipboard:

BOOL CWnd::OpenClipboard();

BOOL CWnd::EmptyClipboard();

BOOL CWnd::CloseClipboard();

There is no built-in functions to get or set data from or to the clipboard (except as noted later). For this you will need to use the Win32 API (SDK). The two functions for this are:

HANDLE SetClipboardData(UINT uFormat, HANDLE hMem);

HANDLE GetClipboardData(UINT uFormat);

These two API functions deal with setting the clipboard data by setting or getting the global handle that the clipboard is using. Since it's global, data can be copied from one program and pasted into another.

The following example shows how to set the clip board data to a string. As if the user copied a string from an edit box:

void CClipDemoView::OnButtonCopy()

{

 CString X;

 X = "Howdy";

 // Open the clipboard, and remove any previous handle it had

 OpenClipboard();

 EmptyClipboard();

 // Setup a memory HANDLE for the clipboard

 HANDLE hMem = GlobalAlloc(GMEM_FIXED, X.GetLength()+1);

 char* pStr = (char*)GlobalLock(hMem);

 strcpy(pStr, X);

 GlobalUnlock(hMem);

 // Tell Clipboard to use our handle now.

 ::SetClipboardData(CF_TEXT, hMem);

 CloseClipboard();

}

If you're just interested in dealing with the clipboard for text (most people are), then you can use functions build into the CEdit class to do it. The following functions are available in a CEdit object (it would be attached to an edit control, on screen):

void CEdit::Copy();

void CEdit::Paste();

void CEdit::Cut();

void CEdit::Clear();

So, the above example could be replaced, if it were comming from a CEdit, with:

void CClipDemoView::OnButtonCopy()

{

 CEdit* pEdit = (CEdit*)GetDlgItem(IDCEDIT1);

 pEdit->Copy();

}

3. Enable/Disable menu options

You should also enable or disable the Edit menu choices accordingly. For example, if there isn't anything in the clipboard, then Paste should be disabled. If the focus isn't on an Edit control, then you might want to disable the Cut and Copy menu items as well. Use the UPDATE_COMMAND_UI message for each menu item to control their appearance.

Handling All Edit Controls, automatically

The example above, reallies on you knowing the ID for an edit control. This means that if you add or remove edit controls, you will need to alter your code as well. The following describes a method for changing your view so that the iew class automatically handles any clipboard operations.

1. Keep track of when your in an Edit box

First, you need to keep track of when you are in an edit box. To do this, add an integer member variable to your view class, called nEditID. Next, add a member function, via ClassWizard called OnCmdMsg. The OnCmdMsg function should look like (SetEditPaste, is defined below):

BOOL CClipView::OnCmdMsg(UINT nID, int nCode, void* pExtra, AFX_CMDHANDLERINFO* pHandlerInfo)

{

	if(nCode== EN_SETFOCUS) // Entering an Edit control

	{

		nEditID = nID; // Save it's ID

		SetEditPaste(SEP_DETERMINE);

	}

	else

	if(nCode== EN_KILLFOCUS)	// We left an edit control

	{

		nEditID = 0;	// Clear out the ID

		SetEditPaste(SEP_DETERMINE);

	}

	return CFormView::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);

}

2. Add the OnEdit, OnPaste, OnCopy, and OnUndo functions

 Using ClassWizard, add member functions for the Edit menu choices. These routines should pay attention to the current control (by calling GetDlgItem), and nEditID. For example:

void CClipView::OnEditCopy()

{

	if(nEditID)

	{

		CEdit* pEdit = (CEdit*)GetDlgItem(nEditID);

		pEdit->Copy();

	}

}

3. Add the OnUpdateEdit, OnUpdatePaste, OnUpdateCopy Command Update functions

Here, you want determine if menu options should be enabled or disabled. To centralize things, you should write a single function that determines how to enable or disable on menu controls. For Example:

void CClipView::OnUpdateEditPaste(CCmdUI* pCmdUI)

{

	SetEditPaste(SEP_DETERMINE);

	pCmdUI->Enable(PasteEnabled);	// PasteEnabled is a view data member

}

The SetEditPaste option determines how to enable/disable menu items:

void CClipView::SetEditPaste(int Mode)

{

	if(!nEditID)

	{

		UndoEnabled=FALSE;

		CutEnabled=FALSE;

		CopyEnabled=FALSE;

		PasteEnabled=FALSE;

		return;

	}

	UndoEnabled = CutEnabled = CopyEnabled=TRUE;

	if(Mode == SEP_DETERMINE)

	{

		if(OpenClipboard())

		{

			if(GetClipboardData(CF_TEXT))

				Mode = SEP_ON;

			else

				Mode = SEP_OFF;

			CloseClipboard();

		}

	}

	PasteEnabled= (Mode==SEP_ON?TRUE:FALSE);

}

Making the CClipView a reusable class

In order to make the CClipView a reusable class, the following steps were performed:

DECLARE_DYNCREATE was changed to DECLARE_DYNAMIC

IMPLEMENT_DYNCREATE was changed to IMPLEMENT_DYNAMIC

All references to Document handling were removed (i.e., GetDocument)

The AssertValid and Dump functions were made public

The #include of stdafx.h was changed to stdext.h

The #include for the document and project that the view was originally from were removed

A new 'library' project was created, where the CClipView was added.

Using the CClipView Class

Perform the following:

Use AppWizard to create a new CFormView-derived application

Manually, in the view header file of the new project, change it's inheritance from CFormView to CClipView

Manually, replace the references to CFormView to CClipView in the view .cpp file.

In your Project Settings, in the C++ tab, enter /I Path in the Project Options area, where path represents the directory where you placed the .h file when you made CClipView a reusable class

In the Link tab of Project Settings, enter /LIBPATH:path in the Project Options area, where path represents the directory with the LIB file was placed, by the 'library' project you created in Making the CClipView a Reusable Class section.

In the Object/Library modules of the Link tab, enter the name of the library file you created above.

Add a #include for the header file that contains the class definitions of your library, to the project .h file.

