The MClock Example

The MClock program is a demonstration clock-style program. It uses the Windows Timer to constantly update it's display, and creates a font large enough to fill the window with the time string no matter what it's size.

The Timer

Implementing the time requires the following items:

1. A handler for WM_TIMER messages. These messages will be sent periodically to your main window once the timer is started.

2. A call to SetTimer. Calling this function tells windows to start sending WM_TIMER messages to your main window. It's parameters are: The handle to the window to receive the messages, a unique ID for the timer, the time between messages in milliseconds, a pointer to a function to be called periodically (instead of the window handle).

3. A call to KillTimer, to stop the messages from being sent.

Note: WM_TIMER messages do not build up in the message queue. If a WM_TIMER were to be sent to a message queue that already had 1 unhandled WM_TIMER message in it, then the new message would be discarded.

The Fonts

The program creates an Arial font that is sized to fit in the main window, by calling the ScaleFont function (which is written in this program). As the user changes the size of the main window, WM_SIZE messages are sent to the main window. Along with the WM_SIZE message, the lParam parameter contains the new size of the window. This new size is passed off to ScaleFont so that it can re-create the font in the desired size.

The Iconic (minimized) Display

When the program is minimized, it displays the time in it's task bar button. This is handled in the WM_TIMER handler. In this code, the IsIconic function is called to determine if the program is minimized. If it is, then calling SetWindowText to change the caption of the parent window (to the time) changes what is displayed on the task bar. If it isn't minimized, then the WM_TIMER handler simply calls InvalidateRect to force a re-paint of the time.

The Help/About dialog

The 'About' dialog box was created using the resource editor, as was the clock icon that appears in it. The basic handling of a dialog box is as follows:

1. Create the Dialog with the resource editor.

2. Write a 'Dialog Procedure' for the dialog. This is just like a WndProc function, with the following basic exceptions:

	A) You never call DefWindowProc

	B) There is a WM_INITDIALOG that is called after WM_CREATE, but before WM_PAINT

	C) You return 0 if you don't handle a message, non-zero if you do handle it, except for WM_INITDIALOG

	D) If the message is WM_INITDIALOG, then returning non-zero means you want Windows to set focus to the first control,

		returning zero means that you have set focus to a control.

	E) You don't need to handle WM_PAINT (but you can if you want)

	F) You must include a call to EndDialog in the procedure, to close the Dialog Box

3. You call DialogBox or DialogBoxParam to invoke the dialog box. DialogBoxParam allows you to pass an extra piece of user-

	defined data to the dialog, making it a little more reusable.	

The AboutDlgProc function in mclock.cpp is the dialog procedure for the Help/About dialog box. The procedure really does nothing but handle the clicking of the OK button by calling EndDialog (to close the dialog).

Note: There is a conflict in the VC++ documentation concerning the exact definition of the call-back function for the dialog. If you use the exact format used in the documentation, under the DialogBoxProc help item, you will get a compiler error when you call it from DialogBox(). In order to correct this, you can add a DLGPROC typecast. For example:

	DialogBox(hInstance, MAKEINTRESOURCE(IDD_ABOUT), hWnd, (DLGPROC)AboutDlgProc);

