Procedural vs. Event-driven programming

When some programmers familiar with a text-based operating system (such as DOS, or UNIX) get an introduction to a Graphical User Interface, they tend to have difficulty dealing with the different programming paradigms involved. Text-based programs, implement a procedural approach, while a GUI uses an event-driven one.

While event-driven programming might seem strange at first, it is actually quite logical, and easier than procedural. In procedural programming, the programmer has full control over the flow of the user's work, and what path's they make. But in event-driven approach, there's more of a 'respond-to-user' approach.

In reality, there isn't much difference to the approaches, except that in event-driven programming, you let the operating system take care of the user interface. For example, examine the following procedural-style code:

void OnReplace()

{

	// Replace contents of existing file

}

void OnAppend()

{

	// Append contents of existing file

}

void main()

{

	// Some code

	char Ch;

	cout << "File exists, do you want to replace, or append it?" << endl;

	cin >> Ch;

	if(Ch=='R' || Ch=='r')

		OnReplace();

	else

		OnAppend();

}

Note how this application controls the user interface in main, then based on the user's response, invokes the correct function. In an event-driven model, the main difference is that the user interface is handled by the operating system. Both models will have the OnReplace and OnAppend functions.

The following code is pseudo-code (not real windows code) of what the main function might look like in an event-driven model:

void main()

{

	CreateButton("Replace", OnReplace);

	CreateButton("Append", OnAppend);

}

In this example, make believe that the CreateButton function will create a Button window. It takes two parameters: The caption for the button, and the name of the function to call if the user clicks that button. Here, we simply create the button and specify what happens when it is clicked. Windows takes care of things like working with the mouse, or how the user clicks the button (mouse of keyboard), and invoking the correct function when a button is pressed.

Note that this is an over-simplification of real-world Windows programming, but it does describe the process. Functions like OnReplace and OnAppend are called 'call-back' functions, meaning that you write the function and provide it's address to Windows, so that windows can call the function when needed (you might never directly call the functions in your code).

